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ABSTRACT 

Context: To survive in a highly competitive software market, 

product managers are striving for frequent, incremental releases in 

ever shorter cycles. Release decisions are characterized by high 

complexity and have a high impact on project success. Under such 

conditions, using the experience from past releases could help 

product managers to take more informed decisions.  

Goal and research objectives:  To make decisions about when to 

make a release more operational, we formulated release readiness 

(RR) as a binary classification problem. The goal of our research 

presented in this paper is twofold: (i) to propose a machine 

learning approach called RC* (Release readiness Classification 

applying predictive techniques) with two approaches for defining 

the training set called incremental and sliding window, and (ii) to 

empirically evaluate the applicability of RC* for varying project 

characteristics.  

Methodology: In the form of explorative case study research, we 

applied the RC* method to four OSS projects under the Apache 

Software Foundation. We retrospectively covered a period of 82 

months, 90 releases and 3722 issues. We use Random Forest as 

the classification technique along with eight independent variables 

to classify release readiness in individual weeks. Predictive 

performance was measured in terms of precision, recall, F-

measure, and accuracy. 

Results: The incremental and sliding window approaches 

respectively achieve an overall 76% and 79% accuracy in 

classifying RR for four analyzed projects. Incremental approach 

outperforms sliding window approach in terms of stability of the 

predictive performance. Predictive performance for both 

approaches are significantly influenced by three project 

characteristics i) release duration, ii) number of issues in a release, 

iii) size of the initial training dataset. Our initial analysis shows, 

incremental approach achieves higher accuracy when releases 

have long duration, low number of issues and classifiers are 

trained with large training set. On the other hand, sliding window 

approach achieves higher accuracy when releases have short 

duration and classifiers are trained with small training set.   
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1. INTRODUCTION 
Context: Product managers strive for fast, short, and incremental 

releases of their products to survive in the highly competitive 

software industry. Release decisions are often made based on a 

product manager’s experience and gut feeling. Wrong release 

decisions such as an early or late release may yield negative 

consequences for the software supplier with respect to cost/benefit 

ratio, customer satisfaction and overall product success. In 

consideration of the complexity and risk associated with any 

release decision made, a technique that systematically analyzes 

past releases to predict current release readiness (RR) might be 

helpful.  

Motivation: RR prediction has received attention in the scientific 

literature. The majority of existing approaches quantifies RR with 

fuzzy values [4, 10]. The disadvantage of these approaches is the 

difficulty of interpreting fuzzy values purely based on a product 

manager’s experience [10, 12]. In our former study published in 

RAISE 2016 [1], we simplify RR prediction by formulating it as a 

binary classification problem. Here classification refers to the task 

of identifying whether a software release is likely going to be 

ready or non-ready at the end of a release cycle. Comparing nine 

machine learning techniques for RR classification, we found that 

Random Forest (RF) performed best. Therefore, in this paper, we 

use Random Forest as the classifier in our RC* method (Release 

readiness Classification applying predictive techniques). 

To evaluate RC*, cross validation is not applicable, because this 

randomly creates and selects training and testing data folds. Since 

this approach does not preserve the actual order of releases we 

used different approaches to create training and test datasets. We 

arranged releases in the temporal order in which they were 

published. Taking the chronological ordering of release-related 

data under consideration, we used two different approaches for 

constructing training and testing data sets for the evaluation of 

RC*.   

 Incremental Approach:  Inclusion of a new week’s 

information increases the training dataset size. This approach 

considers all past weeks prior to the current week as training 

dataset. 

 Sliding Window Approach: Inclusion of a new week’s 

information and elimination of the oldest week from the 

training dataset. This approach considers a fixed number of 

most recent weeks in the training dataset.  

Case study and Results: In the form of explorative case study 

research, we empirically analyze four OSS projects from Jira issue 

tracking system under Apache Software Foundation (ASF). RC* 

predicts the release readiness (RR) class with respect to eight 

independent variables. The training dataset is defined applying 

two approaches, i.e., incremental and sliding window. Our 

explorative analysis of OSS projects yielded the following key 

results (details in Section 5).  

 RC* can predict release readiness class with 76% and 79% 

overall accuracy when applying the incremental and sliding 

window approaches, respectively.  



 Incremental approach outperforms sliding window approach 

in terms of stability of their predictive performance in 

applying RC*.  

 Three project characteristics under investigation i.e. i) release 

duration, ii) number of issues in a release, iii) size of the 

initial training dataset has shown significant influence on 

predictive performance for both approaches.  

 Incremental approach achieves higher accuracy when 

releases have long duration, low number of issues and 

classifiers are trained with large training set. On the other 

hand, sliding window approach achieves higher accuracy 

when releases have short duration and classifiers are trained 

with small training set.   

2. RELATED WORK 
The value of measuring and predicting RR has been described in 

[12]. While the problem of predicting RR received attention in 

research, the definition of RR is not yet well established. Quah et 

al. [9] defined RR mainly based on the status of defect tracking. 

Wild et al. [15] considered multiple factors (e.g. requirements, 

functionality, reliability) in defining RR. Commercial tools like 

Borland Team Inspector and PTC Integrity  extract and visualize 

multiple metrics related to functionality, code analysis, and test 

coverage etc. to verify RR.  

We identified three issues which are often evident in existing RR 

prediction methods.  

 Lack of comprehensiveness: The majority of existing 

approaches measure RR exclusively based on quality metrics 

[4, 10]. This restricts a product manager’s view on RR and 

does not consider other factors relevant for judging the 

completeness of a product, e.g. requirements coverage. 

 Lack of data availability: Some approaches [10, 12] 

attempt to aggregate multiple RR attributes in one single 

quantitative RR measure. Unavailability of required data in 

past releases make these approaches dependent on domain 

experts’ assumptions needed to fill data gaps [11–13]. 

 Lack of continuity: The majority of existing approaches 

identify RR towards the end of a release cycle [4, 8, 11]. Due 

to lack of continuity in monitoring readiness of the product, 

product managers are unable to detect potential release 

problems early and thus cannot take actions to address them. 

The proposed RC* method predicts the RR class (ready or non-

ready) at any point in time within a release cycle. It applies eight 

RR attributes selected from multiple dimensions (e.g. 

implementation, quality) for prediction. Thus, RC* offers 

improved visibility of overall completeness and continuity in 

monitoring. RC* simplifies the interpretation of RR by answering 

the binary question “whether the release is going to be ready at the 

end of the planned release duration?” It utilizes past release 

history to minimize expert dependency. RC* applies the machine 

learning technique Random Forest (RF) for classification. Similar 

techniques have been found to successfully solve various software 

engineering prediction problems, e.g., in the context of quality 

prediction [6] and effort estimation [5].  

3. RESEARCH OBJECTIVES 
Extending former investigations published at RAISE 2016 [1], we 

further analyze our RR classification problem for both learning 

approaches and varying project characteristics. In total, we 

address two research objectives: 

 RO-1: Analysis of the impact of incremental and sliding 

window training set approach in terms of quality and stability 

of prediction of RC*. 

 RO-2: Analysis of RC* performance for varying project 

characteristics. 

In our study, RO1 emphasize quality and stability of the 

prediction, and RO2 focus on the influence of three project 

characteristics i) release duration, ii) number of issues in a release, 

iii) size of the initial training dataset. 

4. CASE STUDY DESIGN  
In this section, we present the design of our explorative case study 

along step by step. 

4.1 Preparation 
There is a lack of published data documenting release practices. In 

absence of access to data from proprietary projects, we chose to 

use OSS projects in our case study. We selected projects from the 

JIRA issue tracking system1  having the following characteristics: 

 Follows a planned development process (e.g., RUP, Kanban, 

Scrum). 

 Provides data on development progress in issue, code and 

bug repositories (e.g., JIRA, GitHub, Bugzilla). 

 Reports release completeness information on former releases.  

 Has existing release history. 

From crawling more than 250 OSS projects, we identified 56 

projects partially fulfilling the above criteria. To further filter 

inactive and toy projects, we verified access to JIRA, Scrum board 

and corresponding code repository. To ensure availability of 

historical data, we discarded projects with less than five releases. 

This further narrowed down the number of selected projects to 

four. The projects are Aurora (A), Slider (S), Usergrid (U), and 

Helix (H). For data analysis, we used the open source machine 

learning tool Weka2.  

4.2 Definition of Project Measures  
Release and Observation Period: The selected projects practice 

Scrum development. We defined our observation period and 

release dates with respect to the time horizon available in the 

Scrum board. Table 1 summarizes key characteristics of the 

selected projects.  

Table 1. Key characteristics of the selected projects. 

Project 

Name 

Studied 

duration 

(months) 

Number of  

releases 

Number 

of issues 

Age of 

project 

(months) 

Aurora (A) 21 34 1511 50 

Slider (S) 21 17 1023 21 

Usergrid (U) 28 34 1163 28 

Helix (H) 12 5 25 28 

 

RR Attributes: Following our goal-oriented approach in [2], we 

empirically investigate a set of product and process related RR 

attributes which were shown to influence release readiness (cf. 

Table 2). We consider these RR attributes as independent 

variables when building the classifier using the RF technique. 

These variables represent three dimensions of the RR problem, i.e. 

                                                                 

1 https://www.atlassian.com/software/jira 

2 http://www.cs.waikato.ac.nz/ml/weka/ 



(i) Quality, (ii) Implementation and (iii) Time. Details related to 

these dimensions are described in [2]. 

Table 2. List of independent variables and their definitions 

Dimension RR Attributes Definition 

Quality 

Quality issue  

incoming rate at 

week k 

Identified quality issues in week k / 

Total number of identified quality 

issues  up to that week 

Quality 

Quality issue 

resolution rate 

at the end of 

week k 

Solved quality issues in week (k) / 

Total number of identified quality 

issues  up to that week 

Quality 

Open quality 

issues at the end 

of a week 

Unresolved quality issues at that 

week 

Implement

ation 

Implementation 

issues incoming 

rate at the end 

of week k 

Requested implementation issues  in 

week (k) /Requested implementation 

issues up to week (k) 

Implement

ation 

Implementation 

issue 

completion rate 

at the end of 

week k 

Completed implementation issues in 

week (k) / Total number of 

requested implementation issues up 

to that  week  

Implement

ation 

Unsolved 

implementation 

issues at the end 

of week k 

Incomplete implementation issues in 

week (k) 

Time 
Release 

duration 

Expected duration of current release 

(days) 

Time 
Elapsed 

duration 

Days passed of current release / 

Release duration (days) 

 

4.3 Data Collection  
We selected four OSS projects under Apache Software 

Foundation (ASF). ASF is a decentralized developer community, 

where projects are carried out using a collaborative, consensus-

based development process and managed by self-selected teams 

that actively contribute to the project. We extract issue data from 

the JIRA Issue Tracking System3, using JRJC4 (Jira Rest Java 

Client) with a Java program. Initially extracted unstructured text 

files are further filtered using text filters to retrieve issue relevant 

information. We collect data on a weekly basis. Issues are 

resolved in multiple releases following their opening and 

resolution dates. 

4.4 Preparation of Training Dataset 
In preparation of the training dataset, first we calculate selected 

RR attributes from extracted data using the definitions presented 

in Table 2. We further label all past releases as either ready or 

non-ready. This classification is performed retrospectively based 

on the percentage (denoted as release policy) of issues resolved in 

a release with respect to the expected release plan.  

Definition (Release Policy): For a given project P and 

observation period [0, 𝑇], 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 (𝑦) considers all 

releases within [0, 𝑇] as ready if 𝑦% of all issues from that release 

are resolved, and non-ready otherwise.  

                                                                 

3 https://www.atlassian.com/software/jira 

4 https://marketplace.atlassian.com/plugins/com.atlassian.jira.jira-

rest-java-client/server/overview 

The number of ready and non-ready releases change depending 

on the applied release policy. We assume that releases are 

classified as `ready` even though not all issues are resolved. The 

number of ready releases decreases with higher release policies. 

From a more technical perspective, the numbers of ready and non-

ready releases can become extremely unbalanced. For example, 

under 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 (100) the numbers of ready releases for 

Aurora, Slider, and Usergrid are 4, 2, and 0, respectively.  

We avoided oversampling by balancing the training dataset due to 

two reasons: (i) this may lead to over-fitted models, and (ii) the 

minority class members are significantly low and insufficient for 

creating meaningful synthetic data. As a result, for each project 

we investigate multiple release policies as shown in equation (1). 

We restrict our analysis to release policies where the numbers of 

ready and non-ready releases are most balanced (cf. Figure 1). 

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 (𝑦) 𝑤ℎ𝑒𝑟𝑒 𝑦 = {50,60,70,80,90,100} (1) 

 

 

Figure 1: Number of ready, non-ready releases analyzed.  

4.5 Evaluation Set-up 
At any point in time during the release cycle, RR classification 

helps product managers to understand the status of the ongoing 

release. In [1], when comparing nine different classifiers, we 

found that Random Forest (RF) [3] performs best for RR 

classification. RF combines an ensemble of decision trees for 

classification. Each tree is built based on the value of an 

independent set of random vectors. Key benefits of this approach 

are (i) less sensitive to outliers, (ii) over-fitting is a less serious 

concern, (iii) accuracy and variable importance can be generated 

automatically. 

We assume that for any project 𝑃 with an observation period 

[0, 𝑇], at any given week  𝑡 = 𝑡0  ∈ [0, 𝑇], we have a set of 

variables available as presented in equation (2). 

𝑉(𝑡0) = {𝐴(𝑡0), 𝑅𝑅𝐶 (𝑡0)} (2) 

 𝑛 is the number of independent variables (n=8)  

 𝐴(𝑡0) refers to the values of independent variables at week 

𝑡 = 𝑡0 i.e. 𝐴(𝑡0) = {𝑎1(𝑡0), 𝑎2(𝑡0), … . , 𝑎𝑛(𝑡0)} 

 𝑅𝑅𝐶(𝑡0) - binary variable describing  Release Readiness at 

the end of week 𝑡 = 𝑡0.  

For predicting 𝑅𝑅𝐶(𝑡𝑥) for any week 𝑡 =  𝑡𝑥 , we assume that (i) 

weights of independent variables are equal, (ii) the values of all 

independent and dependent variables for all previous weeks are 

known, and (iii) values of the independent variables in the current 

week are known.  



To predict 𝑅𝑅𝐶(𝑡𝑥) 

𝑅𝑅𝐶(𝑡𝑥) = 𝑅𝐶 ∗ (𝐷(𝑡𝑥), 𝐴(𝑡𝑥)) (3) 

we apply RC* with training set 𝐷(𝑡𝑥), where 

𝐷(𝑡𝑥) = {𝑉(𝑡0), 𝑉(𝑡1), … . . 𝑉(𝑡(𝑥−1))} (4) 

Values for the training dataset are dynamically changing and 

updated with inclusion of each new week’s information. The 

inclusion of a new week’s information 𝑉(𝑡𝑥) in the updated 

training dataset 𝐷(𝑡𝑥+1) follows the incremental or sliding 

window approach.  In the incremental variant of RC*, any new 

week is added to the existing training dataset, thus each time 

increasing the training size by 1. The sliding window variant of 

RC* includes a new week’s information and eliminates the oldest 

week from the training dataset. Thus always maintains a fixed 

training dataset size with most recent weeks. 

5. CASE STUDY RESULTS  
In what follows, we present the analysis and findings from 

studying our research objectives (RO). In the form of an 

explorative study, we first compare the performance of RC* using 

the incremental approach against RC* using the sliding window 

approach (RO1). Then we investigate the performance of RC* in 

dependence of project characteristics influence (RO2).   

5.1 RO1: Analysis of incremental and sliding 

window training set approach  
RO1 investigates whether it is feasible to build classifiers 

applying incremental or sliding window approaches to predict RR 

class. It comparatively analyze the predictive performance of the 

incremental (𝑅𝐶 ∗𝑖𝑛𝑐) and sliding window (𝑅𝐶 ∗𝑠𝑙𝑤) approaches 

in terms of quality and stability from applying them to four OSS 

projects. 𝑅𝐶 ∗𝑖𝑛𝑐  (𝑥) and 𝑅𝐶 ∗𝑠𝑙𝑤  (𝑥) are determined following 

Section 4.5 while Quality and Stability are defined as below:  

Definition (Quality): Quality of any approach is defined by 

comparing predicted result 𝑅𝑅𝐶(𝑡𝑖) for each week 𝑡 = 𝑡𝑖 ∈
[𝑡𝑥, 𝑇] with actual performance.  

Definition (Stability): Stability refers to the variance between the 

prediction accuracy of consecutive experiments. We determine 

stability following equation (5) where 𝑅𝐶 ∗(x) refers to prediction 

of 𝑅𝑅𝐶(𝑡𝑥).  

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =  
∑  𝑎𝑏𝑠(𝑅𝐶 ∗ (𝑖 + 1) − 𝑅𝐶 ∗ (𝑖))𝑡𝑥

(𝑇 − 𝑡𝑥)
 (5) 

The value of higher stability is that in that case predictions are less 

sensitive to changes in the time. We investigate quality and 

stability for both approaches while applying different initial 

training set and sliding window sizes, i.e.,𝑥 ∈ [5,40]. Figure 2 

presents the prediction accuracy (y-axis) of individual projects 

achieved applying both approaches with different size of the 

initial training set (x-axis). In Figure 3, we further summarize 

quality and stability measures of each approach for individual 

projects and across projects.  

For RO1, we made the following observations:  

Finding 1.1: Incremental and sliding-window approaches 

effectively predict RR classes with overall accuracy of 76% and 

79%, respectively.  

Finding 1.2: Incremental approach outperforms sliding window 

approach in terms of stability of the prediction. 

 Finding 1.3: None of the approaches clearly out-performs the 

other in terms of quality of the prediction. 

  

  
Figure 2. Prediction accuracy achieved applying incremental and sliding window variant of RC* method on projects Aurora 

(A-70) Slider (S-70), Helix (H-60), Usergrid (U-70) (clockwise from top left corner). 



 

 

Figure 3. Comparison of incremental and sliding window 

approach in terms of quality (top) and stability (bottom).  

 

5.2 RO2: Analysis of RC* quality of results 

for varying project characteristics  
RO1 investigates quality and stability of the RC* method. It is 

equally important to investigate applicability of the RC* method 

i.e. whether the method is equally effective under different project 

setup. Going beyond overall performance of 𝑅𝐶 ∗𝑖𝑛𝑐  and 𝑅𝐶 ∗𝑠𝑙𝑤, 

RO2 investigates whether project characteristics significantly 

influence the predictive performance of RC*. In this paper, we 

limit our investigation in three individual project characteristics 

i.e. i) number of issues in a release, ii) release duration and iii) 

size of the training dataset. For individual project characteristics, 

we subdivide all releases of a project into two groups as defined 

below:  

 High and Low refers to release groups, where the number of 

expected issues are higher resp. lower than the mean number 

of issues per release observed in a project. 

 Long and Short refers to release groups, where release 

duration is longer resp. shorter than 14 days (i.e., mean sprint 

size). 

 Large and Small refer to experiments, where the initial 

training dataset size is larger resp. smaller than 17 weeks 

(i.e., median of our investigation range [5,40]).    

Predictive performance is measured by the accuracy (Acc.) and F-

measure of ready (F-R), and non-ready (F-NR) groups. To 

investigate the influence of these project characteristics, we 

further applied two-tailed Mann-Whitney U-test [7] to test 

corresponding null hypotheses: 

 Null hypothesis 𝑯𝟐.𝟏: There is no significant difference in 

predictive performance of 𝑅𝐶 ∗ when applied on High versus 

Low release groups.  

 Null hypothesis 𝑯𝟐.𝟐: There is no significant difference in 

predictive performance of 𝑅𝐶 ∗ when applied on Long versus 

Short release groups.  

 Null hypothesis 𝑯𝟐.𝟑: There is no significant difference in 

predictive performance of 𝑅𝐶 ∗ when applied on Large 

versus  Small size initial training sets. 

Table 3 and 4 report the p-values achieved from performing non-

parametric  Mann-Whitney test [7] with respect to Accuracy and F 

measure for ready (F-R), non-ready (F-NR) releases. In case of 

identifying significant difference, we also report the group, which 

achieved higher predictive performance. Key findings observed in 

these investigations are: 

Table 3. Results of two-tailed Mann-Whitney U-test for 

investigating influence of project characteristics on 

𝑹𝑪 ∗𝒊𝒏𝒄 performance. 

 

 𝑅𝐶 ∗𝑖𝑛𝑐  with project 
characteristcs 

F-R F-NR Acc. 

Number of 
issues 

High 
(H) 

Low 
(L) 

0.329 0.563 
0.046 

(L) 

Release 
duration 

Long 
(L)  

Short 
(S) 

0.278 
0.000 

(L) 
0.000 

(L) 

Size training 
set 

Large 
(L) 

Small 
(S) 

0.602 
0.023 

(S) 
0.032 

(L) 
 

Table 4. Results of two-tailed Mann-Whitney U-test for 

investigating influence of project characteristics on 

𝑹𝑪 ∗𝒔𝒘 performance. 

 𝑅𝐶 ∗𝑠𝑙𝑤 with project 
characteristcs 

F-R F-NR Acc. 

Number of 
issues 

High 
(H) 

Low 
(L) 

0.486 
0.005 

(L) 
0.956 

Release 
duration 

Long 
(L)  

Short 
(S) 

0.664 
0.064 

(S) 
0.040 

(S) 

Size training 
set 

Large 
(L) 

Small 
(S) 

0.983 
0.062 

(S) 
0.039 

(S) 
 

 

For RO2, we made the following observations:  

Finding 2.1: Release duration significantly (at level 0.005) 

influence predictive performance of the incremental approach. 

Observed Acc. and F-NR are higher in Long release group.   

Finding 2.2: The number of issues in a release significantly 

influence (at level 0.05) predictive performance of the incremental 

approach. Observed Acc. is higher in the Low release group.  

Finding 2.3: The number of issues in a release significantly 

influence (at level 0.005) predictive performance of the sliding 

window approach. Observed F-NR is higher in Low release group. 

Finding 2.4: Release duration significantly (at level 0.05) 

influences predictive performance of sliding window approach. 

Observed Acc. and F-NR are higher in Short release group.  

Finding 2.5: The size of the initial training set significantly 

influences (at level 0.05) predictive performance of the sliding 

window approach. Observed Acc. and F-NR are higher in Small 

release group. 



These findings further allow us to understand applicability of the 

RC* approach under varying project setup. Our initial observation 

shows, incremental approach achieves higher accuracy when 

releases have long duration, low number of issues and classifiers 

are trained with large training set. On the other hand, sliding 

window approach achieves higher accuracy when releases have 

short duration and classifiers are trained with small training set. 

Product manager may apply this knowledge to choose between 

different learning approaches while applying them on certain 

projects. 

6. THREATS TO VALIDITY  
This study is exploratory in nature and should be seen as the 

initial step of an ongoing effort to applying machine learning 

algorithms towards classifying RR. Since we considered four OSS 

projects, representativeness of these projects is a threat to the 

external validity of our observations. To reduce this threat, our 

selected projects conform to the four propositions on case 

selection by Verner et al. [14]: i) we can measure RR attributes at 

any time, ii) we can identify the overall RR, iii) collected metrics 

and their collection process is clearly defined, and iv) collected 

metrics are relevant for answering the RQs. We also consider a 

relatively long observation period for each project. 

Selection of classification technique and RR attributes may 

introduce threats to construct validity for the RC* method.  To 

reduce this threat, we selected RF as the classification technique, 

which was shown as the best predictor for RR classification in a 

comparative analysis among nine classifiers [1]. Prior to reporting 

the results, we also performed parameter tuning and identified the 

best configuration by comparing them applying the balanced 

accuracy measure. However, parameters are continuous and can 

take infinite number of possible values. Therefore, the constructed 

models might not necessarily be the best models for the given 

datasets. To reduce the threat related to RR attributes selection, 

we consider key dimensions of RR (e.g. implementation, testing). 

Selected RR attributes were shown as influential on RR in an 

explorative study [2] and represent 50% of RR attributes known 

from comprehensive industry guidelines.    

7. SUMMARY AND FUTURE RESEARCH 
Release readiness evaluation is of critical importance for release 

engineering. While inherently as difficult as predicting project 

success, we considered a simplified formulation of RR and 

applied RC* in an explorative case study set-up. The two main 

contributions of this paper are i) proposing and comparing two 

approaches for varying training dataset in RC* and ii) empirically 

evaluate the applicability of these approaches.  

As a follow up, investigating varying project characteristics  

reports significant influence of three project characteristics on the 

predictive performance. We consider this research as the initial 

phase of a more comprehensive analysis with focus on:  

 Incorporate prediction for different levels of readiness of a 

release, thus enhancing the current Boolean formulation of 

the problem.  

 Analysis of the robustness of the results in dependence on the 

varying weights of RR.  

 Tuning project characteristics weight factors to achieve 

better prediction results. 

 Broadening the project scope to proprietary projects and 

comparison of results with observations from other OSS 

projects.  

 Provide guidelines for which predictive technique is better 

suited for which type of release readiness prediction 

problem. 
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