
Release Readiness Classification –
An Explorative Case Study

S M Didar Al Alam
SEDS Laboratory, Dept. of CPSC,

University of Calgary
Calgary, AB, Canada

smdalam@ucalgary.ca

Dietmar Pfahl
Institute of Computer Science

University of Tartu
Tartu, Estonia

dietmar.pfahl@ut.ee

Guenther Ruhe
SEDS Laboratory, Dept. of CPSC,

University of Calgary
Calgary, AB, Canada

ruhe@ucalgary.ca

ABSTRACT

Context: To survive in a highly competitive software market,

product managers are striving for frequent, incremental releases in

ever shorter cycles. Release decisions are characterized by high

complexity and have a high impact on project success. Under such

conditions, using the experience from past releases could help

product managers to take more informed decisions.

Goal and research objectives: To make decisions about when to

make a release more operational, we formulated release readiness

(RR) as a binary classification problem. The goal of our research

presented in this paper is twofold: (i) to propose a machine

learning approach called RC* (Release readiness Classification

applying predictive techniques) with two approaches for defining

the training set called incremental and sliding window, and (ii) to

empirically evaluate the applicability of RC* for varying project

characteristics.

Methodology: In the form of explorative case study research, we

applied the RC* method to four OSS projects under the Apache

Software Foundation. We retrospectively covered a period of 82

months, 90 releases and 3722 issues. We use Random Forest as

the classification technique along with eight independent variables

to classify release readiness in individual weeks. Predictive

performance was measured in terms of precision, recall, F-

measure, and accuracy.

Results: The incremental and sliding window approaches

respectively achieve an overall 76% and 79% accuracy in

classifying RR for four analyzed projects. Incremental approach

outperforms sliding window approach in terms of stability of the

predictive performance. Predictive performance for both

approaches are significantly influenced by three project

characteristics i) release duration, ii) number of issues in a release,

iii) size of the initial training dataset. Our initial analysis shows,

incremental approach achieves higher accuracy when releases

have long duration, low number of issues and classifiers are

trained with large training set. On the other hand, sliding window

approach achieves higher accuracy when releases have short

duration and classifiers are trained with small training set.

Keywords

Release readiness classification; explorative case study;

comparative analysis; evaluation.

1. INTRODUCTION
Context: Product managers strive for fast, short, and incremental

releases of their products to survive in the highly competitive

software industry. Release decisions are often made based on a

product manager’s experience and gut feeling. Wrong release

decisions such as an early or late release may yield negative

consequences for the software supplier with respect to cost/benefit

ratio, customer satisfaction and overall product success. In

consideration of the complexity and risk associated with any

release decision made, a technique that systematically analyzes

past releases to predict current release readiness (RR) might be

helpful.

Motivation: RR prediction has received attention in the scientific

literature. The majority of existing approaches quantifies RR with

fuzzy values [4, 10]. The disadvantage of these approaches is the

difficulty of interpreting fuzzy values purely based on a product

manager’s experience [10, 12]. In our former study published in

RAISE 2016 [1], we simplify RR prediction by formulating it as a

binary classification problem. Here classification refers to the task

of identifying whether a software release is likely going to be

ready or non-ready at the end of a release cycle. Comparing nine

machine learning techniques for RR classification, we found that

Random Forest (RF) performed best. Therefore, in this paper, we

use Random Forest as the classifier in our RC* method (Release

readiness Classification applying predictive techniques).

To evaluate RC*, cross validation is not applicable, because this

randomly creates and selects training and testing data folds. Since

this approach does not preserve the actual order of releases we

used different approaches to create training and test datasets. We

arranged releases in the temporal order in which they were

published. Taking the chronological ordering of release-related

data under consideration, we used two different approaches for

constructing training and testing data sets for the evaluation of

RC*.

 Incremental Approach: Inclusion of a new week’s

information increases the training dataset size. This approach

considers all past weeks prior to the current week as training

dataset.

 Sliding Window Approach: Inclusion of a new week’s

information and elimination of the oldest week from the

training dataset. This approach considers a fixed number of

most recent weeks in the training dataset.

Case study and Results: In the form of explorative case study

research, we empirically analyze four OSS projects from Jira issue

tracking system under Apache Software Foundation (ASF). RC*

predicts the release readiness (RR) class with respect to eight

independent variables. The training dataset is defined applying

two approaches, i.e., incremental and sliding window. Our

explorative analysis of OSS projects yielded the following key

results (details in Section 5).

 RC* can predict release readiness class with 76% and 79%

overall accuracy when applying the incremental and sliding

window approaches, respectively.

 Incremental approach outperforms sliding window approach

in terms of stability of their predictive performance in

applying RC*.

 Three project characteristics under investigation i.e. i) release

duration, ii) number of issues in a release, iii) size of the

initial training dataset has shown significant influence on

predictive performance for both approaches.

 Incremental approach achieves higher accuracy when

releases have long duration, low number of issues and

classifiers are trained with large training set. On the other

hand, sliding window approach achieves higher accuracy

when releases have short duration and classifiers are trained

with small training set.

2. RELATED WORK
The value of measuring and predicting RR has been described in

[12]. While the problem of predicting RR received attention in

research, the definition of RR is not yet well established. Quah et

al. [9] defined RR mainly based on the status of defect tracking.

Wild et al. [15] considered multiple factors (e.g. requirements,

functionality, reliability) in defining RR. Commercial tools like

Borland Team Inspector and PTC Integrity extract and visualize

multiple metrics related to functionality, code analysis, and test

coverage etc. to verify RR.

We identified three issues which are often evident in existing RR

prediction methods.

 Lack of comprehensiveness: The majority of existing

approaches measure RR exclusively based on quality metrics

[4, 10]. This restricts a product manager’s view on RR and

does not consider other factors relevant for judging the

completeness of a product, e.g. requirements coverage.

 Lack of data availability: Some approaches [10, 12]

attempt to aggregate multiple RR attributes in one single

quantitative RR measure. Unavailability of required data in

past releases make these approaches dependent on domain

experts’ assumptions needed to fill data gaps [11–13].

 Lack of continuity: The majority of existing approaches

identify RR towards the end of a release cycle [4, 8, 11]. Due

to lack of continuity in monitoring readiness of the product,

product managers are unable to detect potential release

problems early and thus cannot take actions to address them.

The proposed RC* method predicts the RR class (ready or non-

ready) at any point in time within a release cycle. It applies eight

RR attributes selected from multiple dimensions (e.g.

implementation, quality) for prediction. Thus, RC* offers

improved visibility of overall completeness and continuity in

monitoring. RC* simplifies the interpretation of RR by answering

the binary question “whether the release is going to be ready at the

end of the planned release duration?” It utilizes past release

history to minimize expert dependency. RC* applies the machine

learning technique Random Forest (RF) for classification. Similar

techniques have been found to successfully solve various software

engineering prediction problems, e.g., in the context of quality

prediction [6] and effort estimation [5].

3. RESEARCH OBJECTIVES
Extending former investigations published at RAISE 2016 [1], we

further analyze our RR classification problem for both learning

approaches and varying project characteristics. In total, we

address two research objectives:

 RO-1: Analysis of the impact of incremental and sliding

window training set approach in terms of quality and stability

of prediction of RC*.

 RO-2: Analysis of RC* performance for varying project

characteristics.

In our study, RO1 emphasize quality and stability of the

prediction, and RO2 focus on the influence of three project

characteristics i) release duration, ii) number of issues in a release,

iii) size of the initial training dataset.

4. CASE STUDY DESIGN
In this section, we present the design of our explorative case study

along step by step.

4.1 Preparation
There is a lack of published data documenting release practices. In

absence of access to data from proprietary projects, we chose to

use OSS projects in our case study. We selected projects from the

JIRA issue tracking system1 having the following characteristics:

 Follows a planned development process (e.g., RUP, Kanban,

Scrum).

 Provides data on development progress in issue, code and

bug repositories (e.g., JIRA, GitHub, Bugzilla).

 Reports release completeness information on former releases.

 Has existing release history.

From crawling more than 250 OSS projects, we identified 56

projects partially fulfilling the above criteria. To further filter

inactive and toy projects, we verified access to JIRA, Scrum board

and corresponding code repository. To ensure availability of

historical data, we discarded projects with less than five releases.

This further narrowed down the number of selected projects to

four. The projects are Aurora (A), Slider (S), Usergrid (U), and

Helix (H). For data analysis, we used the open source machine

learning tool Weka2.

4.2 Definition of Project Measures
Release and Observation Period: The selected projects practice

Scrum development. We defined our observation period and

release dates with respect to the time horizon available in the

Scrum board. Table 1 summarizes key characteristics of the

selected projects.

Table 1. Key characteristics of the selected projects.

Project

Name

Studied

duration

(months)

Number of

releases

Number

of issues

Age of

project

(months)

Aurora (A) 21 34 1511 50

Slider (S) 21 17 1023 21

Usergrid (U) 28 34 1163 28

Helix (H) 12 5 25 28

RR Attributes: Following our goal-oriented approach in [2], we

empirically investigate a set of product and process related RR

attributes which were shown to influence release readiness (cf.

Table 2). We consider these RR attributes as independent

variables when building the classifier using the RF technique.

These variables represent three dimensions of the RR problem, i.e.

1 https://www.atlassian.com/software/jira

2 http://www.cs.waikato.ac.nz/ml/weka/

(i) Quality, (ii) Implementation and (iii) Time. Details related to

these dimensions are described in [2].

Table 2. List of independent variables and their definitions

Dimension RR Attributes Definition

Quality

Quality issue

incoming rate at

week k

Identified quality issues in week k /

Total number of identified quality

issues up to that week

Quality

Quality issue

resolution rate

at the end of

week k

Solved quality issues in week (k) /

Total number of identified quality

issues up to that week

Quality

Open quality

issues at the end

of a week

Unresolved quality issues at that

week

Implement

ation

Implementation

issues incoming

rate at the end

of week k

Requested implementation issues in

week (k) /Requested implementation

issues up to week (k)

Implement

ation

Implementation

issue

completion rate

at the end of

week k

Completed implementation issues in

week (k) / Total number of

requested implementation issues up

to that week

Implement

ation

Unsolved

implementation

issues at the end

of week k

Incomplete implementation issues in

week (k)

Time
Release

duration

Expected duration of current release

(days)

Time
Elapsed

duration

Days passed of current release /

Release duration (days)

4.3 Data Collection
We selected four OSS projects under Apache Software

Foundation (ASF). ASF is a decentralized developer community,

where projects are carried out using a collaborative, consensus-

based development process and managed by self-selected teams

that actively contribute to the project. We extract issue data from

the JIRA Issue Tracking System3, using JRJC4 (Jira Rest Java

Client) with a Java program. Initially extracted unstructured text

files are further filtered using text filters to retrieve issue relevant

information. We collect data on a weekly basis. Issues are

resolved in multiple releases following their opening and

resolution dates.

4.4 Preparation of Training Dataset
In preparation of the training dataset, first we calculate selected

RR attributes from extracted data using the definitions presented

in Table 2. We further label all past releases as either ready or

non-ready. This classification is performed retrospectively based

on the percentage (denoted as release policy) of issues resolved in

a release with respect to the expected release plan.

Definition (Release Policy): For a given project P and

observation period [0, 𝑇], 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 (𝑦) considers all

releases within [0, 𝑇] as ready if 𝑦% of all issues from that release

are resolved, and non-ready otherwise.

3 https://www.atlassian.com/software/jira

4 https://marketplace.atlassian.com/plugins/com.atlassian.jira.jira-

rest-java-client/server/overview

The number of ready and non-ready releases change depending

on the applied release policy. We assume that releases are

classified as `ready` even though not all issues are resolved. The

number of ready releases decreases with higher release policies.

From a more technical perspective, the numbers of ready and non-

ready releases can become extremely unbalanced. For example,

under 𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 (100) the numbers of ready releases for

Aurora, Slider, and Usergrid are 4, 2, and 0, respectively.

We avoided oversampling by balancing the training dataset due to

two reasons: (i) this may lead to over-fitted models, and (ii) the

minority class members are significantly low and insufficient for

creating meaningful synthetic data. As a result, for each project

we investigate multiple release policies as shown in equation (1).

We restrict our analysis to release policies where the numbers of

ready and non-ready releases are most balanced (cf. Figure 1).

𝑅𝑒𝑙𝑒𝑎𝑠𝑒 𝑝𝑜𝑙𝑖𝑐𝑦 (𝑦) 𝑤ℎ𝑒𝑟𝑒 𝑦 = {50,60,70,80,90,100} (1)

Figure 1: Number of ready, non-ready releases analyzed.

4.5 Evaluation Set-up
At any point in time during the release cycle, RR classification

helps product managers to understand the status of the ongoing

release. In [1], when comparing nine different classifiers, we

found that Random Forest (RF) [3] performs best for RR

classification. RF combines an ensemble of decision trees for

classification. Each tree is built based on the value of an

independent set of random vectors. Key benefits of this approach

are (i) less sensitive to outliers, (ii) over-fitting is a less serious

concern, (iii) accuracy and variable importance can be generated

automatically.

We assume that for any project 𝑃 with an observation period

[0, 𝑇], at any given week 𝑡 = 𝑡0 ∈ [0, 𝑇], we have a set of

variables available as presented in equation (2).

𝑉(𝑡0) = {𝐴(𝑡0), 𝑅𝑅𝐶 (𝑡0)} (2)

 𝑛 is the number of independent variables (n=8)

 𝐴(𝑡0) refers to the values of independent variables at week

𝑡 = 𝑡0 i.e. 𝐴(𝑡0) = {𝑎1(𝑡0), 𝑎2(𝑡0), … . , 𝑎𝑛(𝑡0)}

 𝑅𝑅𝐶(𝑡0) - binary variable describing Release Readiness at

the end of week 𝑡 = 𝑡0.

For predicting 𝑅𝑅𝐶(𝑡𝑥) for any week 𝑡 = 𝑡𝑥 , we assume that (i)

weights of independent variables are equal, (ii) the values of all

independent and dependent variables for all previous weeks are

known, and (iii) values of the independent variables in the current

week are known.

To predict 𝑅𝑅𝐶(𝑡𝑥)

𝑅𝑅𝐶(𝑡𝑥) = 𝑅𝐶 ∗ (𝐷(𝑡𝑥), 𝐴(𝑡𝑥)) (3)

we apply RC* with training set 𝐷(𝑡𝑥), where

𝐷(𝑡𝑥) = {𝑉(𝑡0), 𝑉(𝑡1), … . . 𝑉(𝑡(𝑥−1))} (4)

Values for the training dataset are dynamically changing and

updated with inclusion of each new week’s information. The

inclusion of a new week’s information 𝑉(𝑡𝑥) in the updated

training dataset 𝐷(𝑡𝑥+1) follows the incremental or sliding

window approach. In the incremental variant of RC*, any new

week is added to the existing training dataset, thus each time

increasing the training size by 1. The sliding window variant of

RC* includes a new week’s information and eliminates the oldest

week from the training dataset. Thus always maintains a fixed

training dataset size with most recent weeks.

5. CASE STUDY RESULTS
In what follows, we present the analysis and findings from

studying our research objectives (RO). In the form of an

explorative study, we first compare the performance of RC* using

the incremental approach against RC* using the sliding window

approach (RO1). Then we investigate the performance of RC* in

dependence of project characteristics influence (RO2).

5.1 RO1: Analysis of incremental and sliding

window training set approach
RO1 investigates whether it is feasible to build classifiers

applying incremental or sliding window approaches to predict RR

class. It comparatively analyze the predictive performance of the

incremental (𝑅𝐶 ∗𝑖𝑛𝑐) and sliding window (𝑅𝐶 ∗𝑠𝑙𝑤) approaches

in terms of quality and stability from applying them to four OSS

projects. 𝑅𝐶 ∗𝑖𝑛𝑐 (𝑥) and 𝑅𝐶 ∗𝑠𝑙𝑤 (𝑥) are determined following

Section 4.5 while Quality and Stability are defined as below:

Definition (Quality): Quality of any approach is defined by

comparing predicted result 𝑅𝑅𝐶(𝑡𝑖) for each week 𝑡 = 𝑡𝑖 ∈
[𝑡𝑥, 𝑇] with actual performance.

Definition (Stability): Stability refers to the variance between the

prediction accuracy of consecutive experiments. We determine

stability following equation (5) where 𝑅𝐶 ∗(x) refers to prediction

of 𝑅𝑅𝐶(𝑡𝑥).

𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 =
∑ 𝑎𝑏𝑠(𝑅𝐶 ∗ (𝑖 + 1) − 𝑅𝐶 ∗ (𝑖))𝑡𝑥

(𝑇 − 𝑡𝑥)
 (5)

The value of higher stability is that in that case predictions are less

sensitive to changes in the time. We investigate quality and

stability for both approaches while applying different initial

training set and sliding window sizes, i.e.,𝑥 ∈ [5,40]. Figure 2

presents the prediction accuracy (y-axis) of individual projects

achieved applying both approaches with different size of the

initial training set (x-axis). In Figure 3, we further summarize

quality and stability measures of each approach for individual

projects and across projects.

For RO1, we made the following observations:

Finding 1.1: Incremental and sliding-window approaches

effectively predict RR classes with overall accuracy of 76% and

79%, respectively.

Finding 1.2: Incremental approach outperforms sliding window

approach in terms of stability of the prediction.

 Finding 1.3: None of the approaches clearly out-performs the

other in terms of quality of the prediction.

Figure 2. Prediction accuracy achieved applying incremental and sliding window variant of RC* method on projects Aurora

(A-70) Slider (S-70), Helix (H-60), Usergrid (U-70) (clockwise from top left corner).

Figure 3. Comparison of incremental and sliding window

approach in terms of quality (top) and stability (bottom).

5.2 RO2: Analysis of RC* quality of results

for varying project characteristics
RO1 investigates quality and stability of the RC* method. It is

equally important to investigate applicability of the RC* method

i.e. whether the method is equally effective under different project

setup. Going beyond overall performance of 𝑅𝐶 ∗𝑖𝑛𝑐 and 𝑅𝐶 ∗𝑠𝑙𝑤,

RO2 investigates whether project characteristics significantly

influence the predictive performance of RC*. In this paper, we

limit our investigation in three individual project characteristics

i.e. i) number of issues in a release, ii) release duration and iii)

size of the training dataset. For individual project characteristics,

we subdivide all releases of a project into two groups as defined

below:

 High and Low refers to release groups, where the number of

expected issues are higher resp. lower than the mean number

of issues per release observed in a project.

 Long and Short refers to release groups, where release

duration is longer resp. shorter than 14 days (i.e., mean sprint

size).

 Large and Small refer to experiments, where the initial

training dataset size is larger resp. smaller than 17 weeks

(i.e., median of our investigation range [5,40]).

Predictive performance is measured by the accuracy (Acc.) and F-

measure of ready (F-R), and non-ready (F-NR) groups. To

investigate the influence of these project characteristics, we

further applied two-tailed Mann-Whitney U-test [7] to test

corresponding null hypotheses:

 Null hypothesis 𝑯𝟐.𝟏: There is no significant difference in

predictive performance of 𝑅𝐶 ∗ when applied on High versus

Low release groups.

 Null hypothesis 𝑯𝟐.𝟐: There is no significant difference in

predictive performance of 𝑅𝐶 ∗ when applied on Long versus

Short release groups.

 Null hypothesis 𝑯𝟐.𝟑: There is no significant difference in

predictive performance of 𝑅𝐶 ∗ when applied on Large

versus Small size initial training sets.

Table 3 and 4 report the p-values achieved from performing non-

parametric Mann-Whitney test [7] with respect to Accuracy and F

measure for ready (F-R), non-ready (F-NR) releases. In case of

identifying significant difference, we also report the group, which

achieved higher predictive performance. Key findings observed in

these investigations are:

Table 3. Results of two-tailed Mann-Whitney U-test for

investigating influence of project characteristics on

𝑹𝑪 ∗𝒊𝒏𝒄 performance.

 𝑅𝐶 ∗𝑖𝑛𝑐 with project
characteristcs

F-R F-NR Acc.

Number of
issues

High
(H)

Low
(L)

0.329 0.563
0.046

(L)

Release
duration

Long
(L)

Short
(S)

0.278
0.000

(L)
0.000

(L)

Size training
set

Large
(L)

Small
(S)

0.602
0.023

(S)
0.032

(L)

Table 4. Results of two-tailed Mann-Whitney U-test for

investigating influence of project characteristics on

𝑹𝑪 ∗𝒔𝒘 performance.

 𝑅𝐶 ∗𝑠𝑙𝑤 with project
characteristcs

F-R F-NR Acc.

Number of
issues

High
(H)

Low
(L)

0.486
0.005

(L)
0.956

Release
duration

Long
(L)

Short
(S)

0.664
0.064

(S)
0.040

(S)

Size training
set

Large
(L)

Small
(S)

0.983
0.062

(S)
0.039

(S)

For RO2, we made the following observations:

Finding 2.1: Release duration significantly (at level 0.005)

influence predictive performance of the incremental approach.

Observed Acc. and F-NR are higher in Long release group.

Finding 2.2: The number of issues in a release significantly

influence (at level 0.05) predictive performance of the incremental

approach. Observed Acc. is higher in the Low release group.

Finding 2.3: The number of issues in a release significantly

influence (at level 0.005) predictive performance of the sliding

window approach. Observed F-NR is higher in Low release group.

Finding 2.4: Release duration significantly (at level 0.05)

influences predictive performance of sliding window approach.

Observed Acc. and F-NR are higher in Short release group.

Finding 2.5: The size of the initial training set significantly

influences (at level 0.05) predictive performance of the sliding

window approach. Observed Acc. and F-NR are higher in Small

release group.

These findings further allow us to understand applicability of the

RC* approach under varying project setup. Our initial observation

shows, incremental approach achieves higher accuracy when

releases have long duration, low number of issues and classifiers

are trained with large training set. On the other hand, sliding

window approach achieves higher accuracy when releases have

short duration and classifiers are trained with small training set.

Product manager may apply this knowledge to choose between

different learning approaches while applying them on certain

projects.

6. THREATS TO VALIDITY
This study is exploratory in nature and should be seen as the

initial step of an ongoing effort to applying machine learning

algorithms towards classifying RR. Since we considered four OSS

projects, representativeness of these projects is a threat to the

external validity of our observations. To reduce this threat, our

selected projects conform to the four propositions on case

selection by Verner et al. [14]: i) we can measure RR attributes at

any time, ii) we can identify the overall RR, iii) collected metrics

and their collection process is clearly defined, and iv) collected

metrics are relevant for answering the RQs. We also consider a

relatively long observation period for each project.

Selection of classification technique and RR attributes may

introduce threats to construct validity for the RC* method. To

reduce this threat, we selected RF as the classification technique,

which was shown as the best predictor for RR classification in a

comparative analysis among nine classifiers [1]. Prior to reporting

the results, we also performed parameter tuning and identified the

best configuration by comparing them applying the balanced

accuracy measure. However, parameters are continuous and can

take infinite number of possible values. Therefore, the constructed

models might not necessarily be the best models for the given

datasets. To reduce the threat related to RR attributes selection,

we consider key dimensions of RR (e.g. implementation, testing).

Selected RR attributes were shown as influential on RR in an

explorative study [2] and represent 50% of RR attributes known

from comprehensive industry guidelines.

7. SUMMARY AND FUTURE RESEARCH
Release readiness evaluation is of critical importance for release

engineering. While inherently as difficult as predicting project

success, we considered a simplified formulation of RR and

applied RC* in an explorative case study set-up. The two main

contributions of this paper are i) proposing and comparing two

approaches for varying training dataset in RC* and ii) empirically

evaluate the applicability of these approaches.

As a follow up, investigating varying project characteristics

reports significant influence of three project characteristics on the

predictive performance. We consider this research as the initial

phase of a more comprehensive analysis with focus on:

 Incorporate prediction for different levels of readiness of a

release, thus enhancing the current Boolean formulation of

the problem.

 Analysis of the robustness of the results in dependence on the

varying weights of RR.

 Tuning project characteristics weight factors to achieve

better prediction results.

 Broadening the project scope to proprietary projects and

comparison of results with observations from other OSS

projects.

 Provide guidelines for which predictive technique is better

suited for which type of release readiness prediction

problem.

8. ACKNOWLEDGEMENTS
This work was partially supported by the Natural Sciences and

Engineering Research Council of Canada, NSERC Discovery

Grant 250343-12, Alberta Innovates Technology Futures and by

the institutional research grant IUT20-55 of the Estonian Research

Council.

9. REFERENCES
[1] Alam, S. et al. 2016. Comparative Analysis of Predictive

Techniques for Release Readiness Classification. RAISE

2016 (2016).

[2] Alam, S. et al. 2015. Monitoring and Controlling Release

Readiness by Learning across Projects. Managing

Software Process Evolution. Springer.

[3] Cichosz, P. 2015. Data Mining Algorithms: Explained

Using R. John Wiley and Sons.

[4] Mcconnell, S. 1997. Gauging software readiness with

defect tracking. IEEE Software. 14, 3 (1997), 135–136.

[5] Minku, L.L. and Yao, X. 2013. Ensembles and locality:

Insight on improving software effort estimation.

Information and Software Technology. 55, 8 (2013),

1512–1528.

[6] Misirli, A.T. et al. 2011. An industrial case study of

classifier ensembles for locating software defects.

Software Quality Journal. 19, 3 (2011), 515–536.

[7] Motulsky, H. 2013. Intuitive biostatistics: a

nonmathematical guide to statistical thinking. Oxford

Univ. Press.

[8] Pearse, T. et al. 1999. Using Metrics to Manage the End-

Game of a Software Project. Proceedings of the Sixth

International Software Metrics Symposium (1999), 207–

215.

[9] Quah, J.T.S. and Liew, S.W. 2008. Gauging Software

Readiness Using Metrics. SMCia (2008), 426–431.

[10] Quah, T.-S. 2009. Estimating software readiness using

predictive models. Information Sciences. 179, 4 (Feb.

2009), 430–445.

[11] R. Brettschneider 1989. Zero-Failure model -Is your

software ready for release? IEEE Software. 6, 4 (1989).

[12] Shahnewaz, S. and Ruhe, G. 2014. RELREA - An

Analytical Approach for Evaluating Release Readiness.

Proc. SEKE (2014).

[13] Staron, M. et al. 2012. Release Readiness Indicator for

Mature Agile and Lean Software Development Projects.

Agile Processes in Software Engineering and Extreme

Programming. (2012), 93–107.

[14] Verner, J.M. et al. 2009. Guidelines for industrially-

based multiple case studies in software engineering.

RCIS (2009), 313–324.

[15] Wild, R. and Brune, P. 2012. Determining Software

Product Release Readiness by the Change-Error

Correlation Function: On the Importance of the Change-

Error Time Lag. HICSS (2012), 5360–5367.

